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Abstrac- The degree of non-planarity of a 5-membered ring can he estimated fairly accurately from a 

knowledge of the bond angles or torsion angles. The same is true for certain commonly occurring types of 
6-membered rings. Some approximate formulae are given with numerical tests of thei; range of applicability. 

INTRODUCTION 

IN A 5-membered ring with fixed bond distances the bond angles and torsion angles 
are related by six equations of constraint (ring-closure conditions). The calculations 
involved in computing the exact values of the six dependent parameters from values 
assigned to the four others are quite tiresome and are best carried out by an electronic 
computer. Even for the relatively simplified cases of equilateral 5-membered rings 
with C, or C, symmetry imposed (only two independent parameters) the exact values 
of dependent parameters can only be obtained after extensive arithmetic as indicated 

by Eq. (1). 

C, (atom 5 on symmetry plane) 

4c0se2(c0se2 - 1) + 2c0se, = i 

C, (atom 5 on symmetry axis) 

16c0s2~,+4c0s28,- 16c0s~,c0s0,+ 

i6c0se,c0se5 - 8c0se, + i2cose2 - 
i4c0se, = 5 

coso,2 = 
I - ~COS~, + 2c0se,c0se2 

2 sin 8 1 sin e2 

COSO~, = i + 2c0se2 - 2c0se, - 2c0se, + 2cose, case, 

I 
2sin0,sin8, 

coso23 = 1 
coso23 = 

2c0s2e2 - 4c0se2 + 2c0se, + i 
2sin28, 

From Eq. 1 it is apparent that the torsion angles w,, are very sensitive to the 
difirences between the bond angles, 8,. In particular, equality of the bond angles 
requires that 8 = 108”, cos w = 0: in other words, the equilateral, isogonal pentagon 
is constrained to lie in a plane, a most remarkable property.’ 

Many 5-membered rings of organic chemistry are non-planar. Any deviation from 
planarity must be associated with a decrease in the average bond angle from 108”- 
the greater the deviation, the smaller the average bond angle. Since the equilibrium 
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bond angles between first-row elements are close to 108” for single bonds and some- 
what greater for double bonds, large deviations from planarity cannot occur without 
excessive bond angle strain. We do not wish to enter here into the energy relationships 
involved but simply note that the actual deviations from planarity observed in typical 
5-membered rings are not very large. Since the bond distances in these rings (e.g. 
cyclopentane, tetrahydrofurane, pyrrolidine, etc) are approximately equal and the 
bond angles close to 108”, the rings will project on their mean planes as approximately 

c 2b (I 

b 
0 

FIG 1. Construction showing how the torsion angles in a non-planar pentagon depend on 

the displacements of the atoms from the mean plane. For inlinitesimal displacements 

0 = .z, - zl, b = (z, - z,) cos 72’, c = z3 - z+ In the drawing the torsion angle UI is 

negative according to the Klyne-Prelog convention [Experientia 16,521 (1960)] 

regular pentagons. This leads to a great simplification for it means that the non- 
planarity can be described, approximately at least, in terms of the out-of-plane 
deformations of a regular pentagon. Similarly, non-planar 6membered rings can be 
described in terms of the out-of-plane deformations of a regular hexagon. 

THE NON-PLANAR PENTAGON 

The out-of-plane deformations of a pentagon can be described in terms of only 
two parameters. For the regular pentagon the most convenient description is in 
terms of the coordinate system introduced by Kilpatrick et al.’ in their discussion of 
pseudorotation in the cyclopentane molecule. We define zj as the displacement of the 
jth atom perpendicular to the plane of the unpuckered pentagon and write 

z, = ,/(2/5) 9 cos j = 1,2,3,4,5 (2) 

Any out-of-plane deformation is then described in terms of the two parameters, 9, 
the amplitude-of the deformation, and 4, its phase angle. We obtain the two symmetri- 
cal puckered forms by setting $I = 36”, 72”, . . . for the C, (envelope) form and 4 = 18”, 
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54”, 90”, . . . for the C2 form. Intermediate values of 4 give puckered rings with no 
symmetry. We note that q2 is the sum of squares of displacements of the atoms from 
the best (least-squares) plane through the ring and shall use this coordinate system 
to show how the bond angles and torsion angles in a puckered pentagon depend on 
the out-of-plane amplitude q. 

If we take the side of the pentagon as length unity then for an infinitesimal displace- 
ment from planarity the bond angle tI,((17,~,3 is given by 

- 
cos 8. = 2[ l + COS (21L/5)] + (Z( - Z~)2 - 2 - (Zi - Zj)2 - (Zj - Z32 

J 
2{1 + (Zi - Zj)2} (1 + (Zj - Z,)‘} 

(3) 

Let 9j = (3x/5) - 6j so that Sj is the decrease in the bond angle at atom j resulting 
from the out-of-plane deformation. Expanding both sides as power series and neglect- 
ing higher powers of 6 and z we obtain 

6j = {tz* - zj)2 + tzj - zk)2} {l + cos t2n/5)l - tzi - z32 
2 sin (2x/5) 

(4) 

Cyclic permutation of the indices and addition then gives 

cs, = 2{1 + COS(~X/~)} { Czf - Czjzj+t} - Czf + Czj”j+z 
J sin (2x/5) (5) 

Fig.1 suggests how an approximate expression for the torsion angle oJ* (oiju) can 
also be derived for infinitesimal displacements : 

OjL = 
ZI - Zj + Z~ - ZI - 2(Zj - 23 COS (2~/5) 

sin (2x/5) 
(6) 

COji =O 

CCO~ = 81~; - 4(J5 + l)Czjzj+t + 4(J5 - l)Czjzj+2 

(7) 

(8) 

Eq (7) says that the algebraic sum of the torsion angles is zero for a slightly puckered 
5-membered ring This is obviously true for the C, form since torsion angles about 
bonds related by a mirror plane are equal in magnitude and opposite in sign; accord- 
ing to (7) this result is independent of the phase angle 4 of the deformation. It can be 
shown’ that for an equilateral 5-membered ring 

C sin Oj~ sin 0, sin 0, = 0 (9) 
holds exactly, so we can expect that (7) will be approximately true also for larger 
puckering amplitudes. Examination of experimental torsion angles in a large number 
of 5-membered rings confirms that this is indeed the case. The sum of the torsion 
angles is also equal to zero in an equilateral Cmembered ring and we shall see later 
that this is also approximately true for the equilateral 6-membered ring It is not true, 
however, for larger rings in general-only for certain symmetrical forms of these. 

We now show that the sums 1 Sj and c 0; are also independent of the phase of 
the puckering and depend only on its amplitude. From (2) we find 

1 Zf = q2 

czflj+, = - (* q2) 
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and hence, substituting in (5) and (8), we obtain 

CSj = 

5(J5 + 1) 
sin (2x/5) ’ 

2 

QBf = 2oqz 

= 4.253 q= (11) 

(12) 

An estimate of the puckering amplitude can therefore be made from a knowledge 
of the bond angles or torsion angles. Since published values of these quantities are 
usually given in degrees we express the above relationships in these units 

C 6j = 540” - 1 e,(deg) = 244 q2 (1 la) 
xo$deg2) = 657 x 104q2 (12a) 

c o$deg2) = 269 c G,(deg) (13) 

Although the numerical constants in these expressions are strictly valid only for 
infinitesimal puckering amplitudes they yield reasonable values of q for quite puckered 
rings. In Table 1 computed values of c a/q2 and c w2/q2 are given for various values 

TABLE 1. VALUeS OF VARIOUS OUT-OF-PLANE PARAMETERS CObWUTFD FOR AN FQUILATERAL PBNTAGON 

(SIDE = 1) WITH ONE ATOM TILTED OUT Op THE PLANE OF THE OTHER FOUR. THE ANGLE a IS THB DIHEDRAL 

ANGLE BETWBBN THB INITIAL RING PLANE 12 2’ 1’ AND THE PLANE 15 1’. THB BOND ANGLES AT 2,2’,5 HAVE BEEN 

HBLD AT 108”. POR COblPARlSON VALUl5 FOR CYCLOPENTANE’ ARE AL90 GIVEN. HERE 0, = t),. = 106.13”, 

f$ = 8,, = 103.95”, es = 102.13” FOR THE c, CONFORblATION. IN THE COURSE OF PSEUDOROTATION THESE 

ANGLES VARY BUT26 Ah.D&? REMAIN CONSTANT 

a 4 Z&de& Cw? ~,02(deg’) 

0 0 0 0 (244) 0 (65.66’3 
10 0065 00042 1.02 243 214 65,240 

20 0129 00167 4.04 242 1074 64,310 

30 0193 00372 8.92 240 2334 62,740 

40 0255 00650 15.4-l 238 3970 61,080 

50 0314 00988 23.45 237 5893 59,650 

60 0369 01363 32.62 239 8036 58.960 

C,H,o 0281 00792 17.70 224 4494 56,740 

of q for the case of an equilateral pentagon with one atom tilted out of the plane of the 
other four. It is seen that for the range 01 < q < 03, in which typical 5-membered 
rings can be expected to occur, almost perfect agreement can be obtained by using 

1 Gi(deg) = 240 q2 (lib) 

xof(deg2) = 6-O x lo* q2 . (12b) 

1 o$deg2) = 250 c Gjdeg) (13b) 

If we use (1 lb) and (12b) to estimate the puckering amplitude of cyclopentane from 
bond angle and torsion angle data3 (c 6 = 17.70 deg c o2 = 4494 deg2) we obtain 
q(S) = 0272, q(co*) = 0269, compared with the exact value q = 0281. 
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The approximate validity of (13b) has been checked by evaluating c w’/c 6 from 
the data collected by Altona et aL4 for ring D in several steroid molecules and for the 
5-membered rings in several corrinoid structures’ (Fig 2). In evaluating out-of-plane 
parameters for small rings it would be helpful if authors would cite bond angles to 
01” even when the absolute accuracy does not seem to merit this. 

5 IO 15 20 25 

C8 (dog) 

FIG 2. Relationship between x8 and 10’ in S-membered rings. The points indicated refer 
to ring D in several steroid derivatives collected in Ref 4 (A-H), rings A, R, C, D in cobyric 
acid (I-L) and in a seco-corriooid derivative (M-P) (Ref 5) and to cyclopcntane itself, Q 

(Ref 3) 

Substitution of (2) in Eq (6) leads to 

(14) 

thus providing a mathematical derivation of the empirical relationship discovered by 
Altona, Geise and Romers4 We note that the maximum torsion angle attainable in a 
pseudorotational circuit is given by 

o,, = 2&Q = 2.828 q (15) 

o,,(deg) = 162 q UW 

for infinitesimal q. For fmite q in the range 01 < q < 03 better results are obtained 
by taking 

w_(deg) = 150 q UW 
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As Altona, Geise and Romers4 have pointed out, o,, and 4 can be derived from 
knowledge of two torsion angles. Hence the puckering amplitude can also be obtained 
from this information. 

THE NON-PLANAR HEXAGON 

To describe the out-of-plane deformations of a hexagon requires in general three 
parameters. Fortunately the non-planarity of many of the 6-membered rings of 
organic chemistry can be described reasonably accurately in terms of only one or two 
parameters. For “chair” forms with approximate D, symmetry, for example, the 
displacement of thejth atom from the mean plane of the unpuckered polygon is given 

by 

Zj = i 4 COS (nj) 
J6 

(16) 

while for the flexible forms belonging to the pseudorotating “boat-twist” family, the 
corresponding displacement is characterized by an amplitude and a phase and is 
given by 

2nj 
Zj =J+ 9 COS T + 4 ( > (17) 

With 4 = o”, 60”, . . . we obtain the symmetrical (C,,) “boat” forms, with 4 = 30”, 
90” . . . the symmetrical (D2) “twist” forms. Intermediate 4 values yield non-planar 
rings that have a twofold rotation axis. More general non-planar distortion of 
hexagons can be described by taking suitable linear combinations of (16) and (17). 

The non-planarity of the chair form is described by a single parameter, which may be 
taken as the mean bond angle or the mean torsion angle or the puckering amplitude q. 
There are exact relationships between these quantities : 

1 
cos 8 = q2 - - 

2 (18) 

1 - 292 
coso= 1 +zq2 (19) 

- cos 8 
--- cos o - 1 + cos 8 

so that the approximate treatment is superfluous. However, we reproduce it briefly 
since its range of applicability may serve as a guide in dealing with other systems. If 
6 = (2x/3) - 0, is the decrease in a bond angle from 120” resulting from the out-of- 
plane deformation it is easy to show that 

6 = $2 = 1.155 q2 c 6 = 4,/3 q2 = 6.928 q2 (21, Q 11) 

= fi2 q’(deg) = 397 q2(deg) 

w2 = 8q2 ~co’ = 48q2 (22, cf 12) 

= 2.63 x 104q2(deg2) = 15.76 x 104q2(deg2) 
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In Table 2 exact values of 6/q’ and 02/q2 are given for increasing values of q for the 
regular hexagon. As in the 5-membered ring case 6/q’ is nearly constant so that q can 
be estimated quite accurately from known values of the bond angles using (21). 

TABLE 2. VALUES OF VARIOUS OUT-OF-PLANE PARAMETERS COMPUW FOR AN EQUILATERAL HJXAGON 

(SIDE = 1) WITH D,, SYMMFTRY 

We.@ 9 92 w(de8) 6/9’(deg) 

120 0 0 0 (66-2) (26,260) 
118 0175 00305 27.8 65.6 25,340 
116 0248 00616 38.7 64.9 24,310 

114 0305 00933 46.7 64.3 23,380 
112 0354 01254 53.2 63.8 22,570 

110 0397 01580 58.7 63.3 21,810 
109” 28’ 0408 01667 600 63.2 21,600 

The pseudorotational family of non-planar hexagons with out-of-plane displace- 
ments given by (17) has a twofold rotation axis common to all its members since 
zj = zj+3. The decrease in bond angle (from 120”) is girths (Q(4)) by 

6, = 3(Zi - Zj)’ + 3(Zj - Zkj2 - 2(Zi - Z&2 - 
J 

243 

(23) 

whence 

cs, = 4C.r: - ~CZ~Z,+I + 2CZjZj+2 
J 

J3 

and the approximate expression for the torsion angle is given by 

Ojk = 
‘1 - zj + zk - ZI - 2(Zj - Z&)COS(lr/3) 

sin (n/3) 

= $z, - Zk) 

using zr = z1 + 3 = zP We obtain the relationships 

cwjk =O 

- aj-1,j = mjk + Ok.k+l 

From (17) it can easily be shown that 

(24) 

(25) 

(26) 

(27) 

(28) 

pi’=cziz,+3=q2 
czy,+1 = x7,+2 = - q212 

(29) 
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whence we obtain by analogy with (11) and (12) 

CSj = 2J(3)# = 3464 4’ = 198 q2(deg) (30) 
c 0; = 16 q2 = 5.25 x 104q2(deg2) (31) 

c &(deg2) = 265 1 G,(deg) (32) 

Equation (26) implies that the sum of the torsion angles is zero for any slightly 
puckered regular hexagon belonging to the boat-twist family. The equation holds 
approximately for quite large puckering of such hexagons, even when the bond 
lengths are not exactly equal_ Eq (27) says that in a slightly puckered hexagon of the 
boat-twist family every torsion angle is the sum of the preceeding two torsion angles 
with reversed sign, a relationship that has already been noted by Buys and Ge&z6 
Eqs (30)-(32) give the linear relationships between out-of-plane parameters valid for 
infinitesimal displacements from the plane. The numbers given in Table 3 show the 
range of applicability of these linear relationships. 

TABLE 3. VALW OF VARIOUS OUT-OF-PLANE P- COMPUT0J FOR AN EQUILATERAL ISXiONAL 

HEXAGON (sr~e = 1)wm C2,, sy-Y (%OAT" FORM). M THE ~~I~~FP~E~D~R~TATION VALE OF 

16/d AND-@2/~21UBMINVlRTUALLYCONSTANT 

120 0 0 0 (198.4) (52,520) 
118 0245 00598 27.8 2006 51,678 

116 0344 01182 38.7 203.1 50,688 
114 0418 Q1749 467 205.8 49,869 
112 0479 02298 53.2 208.9 49,262 
110 0532 02827 58.7 212.3 48,758 

109” 28 0544 02963 600 213.3 48,601 

Substitution of (17) in Eq (25) leads to 

(33) 

which provides the derivation of the cosine dependence 

proposed by Buys and Geise6. The value of o,, is proportional to the puckering 
amplitude. 

QAIUX = -$ q = 2.309 q = 132 q(deg) (34) 

Finally it may be useful to give the approximate linear expressions for the individual 
torsion angles in the twc special forms of C,, and D, symmetry: 
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I -0 c 012 =a45 - 

20 
0 23 = Ii&j = - 06, = - 034 = - 2q = - 115q(deg) (35) 

1 

0 12 = (345 = - Lq = - 132q(deg) 

D2 
J3 

0 23 = 056 = 061 = 034 = Lq = 66q(deg) 
J3 

(36) 

It should be emphasized that the relationships and formulae derived in this paper 
are purely geometrical in nature and do not depend on any features of the molecular 
force field. More rigorous discussion of the geometric constraints in 6-membered 
and other rings has been given elsewhere.7 
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